The Mismeasurement of Risk

Mark Kritzman and Don Rich

Investors typically measure risk as the probability of a given loss or the
amount that can be lost with a given probability at the end of their
investment horizons. This view of risk considers only the final result, but
investors perceive (or should perceive) risk differently. They are affected by
exposure to loss throughout the investment period, not just at its
conclusion. We introduce two new ways of measuring risk—uwithin-
horizon probability of loss and continuous value at risk—that reveal that
exposure to loss is substantially greater than investors normally assume.

In the long run, we are all dead. Economists set

themselves too easy, too useless a task, if in

tempestuous seasons they can only tell us that

when the storm is long past, the ocean will be
flat.

John Maynard Keynes

A Tract on Monetary Reform (1923)

Investors typically measure risk as the proba-

bility of a given loss or the amount that can

be lost with a given probability at the end of
their investment horizon. This view of risk consid-
ers only the result at the end of the investment
horizon, whether the horizon lasts for one day, one
week, one year, or many years. It ignores what
might happen along the way. We argue that expo-
sure to loss throughout an investment horizon, not
only at its conclusion, is important to investors. We
introduce two new ways of measuring risk—
within-horizon probability of loss and continuous
value at risk (VAR).1 These new risk measures
reveal that exposure to loss is substantially greater
than investors normally assume.

We wish to distinguish this problem from the
issue of parameter estimation. Financial analysts
worry that means and variances used in portfolio
formation techniques, such as optimization, are
estimated with error. These errors bias the resultant
portfolio toward assets for which the mean is over-
estimated and variance is underestimated, which
may lead analysts to invest in the wrong portfolio.
Financial analysts also worry that higher moments,
such as skewness and kurtosis, are misestimated,
in which case, extreme returns occur more fre-
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quently in reality than is implied by a lognormal
distribution.? These estimation errors often lead
investors to underestimate the probability of loss
and to overestimate the probability of gain.

These concerns are legitimate and worthy of
investigation. Indeed, the financial industry has
made significant advances in addressing these
problems. For example, financial analysts who
optimize their portfolios often apply compression
techniques to reduce sensitivity to estimation
error,® and they use numerical methods, such as
bootstrapping, to capture deviations from theoret-
ical distributions.*

Our proposal for risk measurement is not
immune to these estimation problems; it suffers
from these problems, but it also benefits from the
variety of techniques available to improve param-
eter estimation. Instead of misestimation, we wish
to focus on a problem we believe is a more funda-
mental cause of financial failure: Investors” wealth
is affected by risk throughout the period in which
it is invested, but risk is generally measured only
for the termination of the period. So, even if inves-
tors could estimate the moments of a distribution
precisely, the investment industry’s approach to
risk measurement would be inadequate.

Figure 1 illustrates the distinction between risk
based on ending outcomes and risk based on out-
comes that might occur along the way. Each line
represents the path of a hypothetical investment of
100 (dollars, for example) through four periods.
The horizontal line at 90 percent represents a loss
threshold, which in this example equals 10 percent.
Figure 1 reveals that only one of the five paths
breaches the loss threshold at the end of the hori-
zon; hence, we might conclude that the likelihood
of a 10 percent loss equals 20 percent. However,
four of the five paths breach the loss threshold at
some point during the investment horizon (and
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Figure 1. Risk of 10 Percent Loss: Ending
Wealth versus Interim Wealth
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three of the four paths subsequently recover). So, if
we care about the investment’s performance along
the way to the end of the horizon, we will conclude
that the likelihood of a 10 percent loss equals 80
percent, not 20 percent.

Some argue that calculation of daily VAR mea-
sures a strategy’s exposure to loss within an invest-
ment horizon, but it does not. Knowledge of the
VAR on a daily basis does not reveal the extent to
which losses may accumulate over time. Moreover,
even if daily VAR is adjusted to account for prior
gains and losses, the investor still has no way to
know at the inception of the strategy, or atany other
point, the cumulative VAR to any future point
throughout the horizon, including interim losses
that later recover.

We propose that investors consider exposure
to loss throughout the investment horizon. Other-
wise, their wealth may not survive to the end. For
that purpose, we introduce two innovations to risk
measurement—within-horizon probability of loss
and continuous VAR. We argue that these innova-
tions capture the nature of investment risk more
realistically than current end-of-period measures.

Why Investors Care about Interim
Risk

Investors care about exposure to loss throughout
their investment horizon, not only atits conclusion,
because they often have thresholds that cannot be
breached if the investment is to survive to the end
of the horizon. Even if survival is not an issue,
investors may be motivated to pay attention to
within-horizon risk because they will be penalized
if they breach a barrier. And finally, if penalization
is not an issue, investors often care about results
throughout their horizon period for the same rea-
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sons that cause them to worry about results at the

end of the horizon. Some examples of why inves-

tors do or should pay attention to exposure to loss
throughout their investment horizon follow.

® Asset management. An asset manager is
awarded a mandate subject to the provision
that the portfolio not depreciate more than 10
percent. Furthermore, the client informs the
asset manager that the investment horizon is
five years. Should the manager assume that the
client will review her performance only once
and that this review will occur at the end of the
last day of the fifth year? Not likely. A more
reasonable expectation is that the client will
review performance throughout the five-year
horizon and terminate that manager if at any
point the portfolio dips below 90 percent of its
value at inception. If this asset manager wishes
to limit the likelihood of termination to 1 per-
cent, she needs to constrain VAR to 10 percent
of the portfolio’s initial value not on the basis
of the distribution of its ending value nor the
distribution of its daily value but, rather, on the
distribution of its value throughout the entire
investment period.

¢ Hedge-fund solvency. A hedge-fund manager,
taking comfort in the belief that the likelihood
of a significant loss at the end of the specified
investment horizon is remote, leverages his
portfolio to increase expected return. His com-
fort is misguided, however, because a signifi-
cant decline from the value of the underlying
assets from inception to any point during the
investment horizon is much more likely than
the likelihood implied by the ending distribu-
tion of the hedge fund’s assets. And a signifi-
cant interim loss could trigger withdrawals
that, added together, might impair the hedge
fund’s solvency.

*  Loanagreement. Aborrower is required to main-
tain a particular level of reserves as a condition
of a loan. If the reserves fall below the required
balance, the loan is called. Again, the probabil-
ity that this covenant will be breached depends
on the distribution of the value of the reserves
not at maturity nor on a daily basis but
throughout the term of the loan.

e Securities lending. Many institutional investors,
such as pension funds, lend their securities to
other investors who engage in short selling.
These investors are required to deposit collat-
eral with the custodian of the securities. The
required level of collateral is typically adjusted
on a daily basis to offset changes in the values
of the securities on loan. Suppose the investor
wishes to estimate the amount of additional
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collateral that might be required at a given
probability for the duration of the loan. This
value depends on the distribution of the secu-
rities” values throughout the term of the loan.
¢ Regulatory requirements. A bank is required to
maintain a capital account equal to a certain
fraction of its loan portfolio. A breach of this
capital requirement will result in a fine. The
probability that the bank will need to replenish
the capital account to avoid a breach depends
on the distribution of the ratio of the capital
account to the loan portfolio throughout the
planning horizon, not at the end of the horizon
or a finite period within the horizon.
These examples are but a few of the many circum-
stances in which investors should pay attention to
probability distributions that span the duration of
their investment horizons. Unfortunately, the com-
mon approach for estimating probability of loss
and VAR is to focus only on the terminal distribu-
tion. In the next section, we present a formula for
estimating probability of loss and VAR continu-
ously throughout the investment horizon.

Within-Horizon Exposure to Loss

We estimate probability of loss, Prg, at the end of
the horizon by (1) calculating the difference
between the cumulative percentage loss and the
cumulative expected return, (2) dividing this differ-
ence by the cumulative standard deviation, and (3)
applying the normal distribution function to con-
vert this standardized distance from the mean to a
probability estimate, as shown in Equation 1:

Prg = Nln(1+L)—ET, )
o /T
where

N[e*] = cumulative normal distribution func-
tion

L = cumulative percentage loss in peri-
odic units

u = annualized expected return in con-
tinuous units

T = number of years in horizon

o] = annualized standard deviation of

continuous returns

The process of compounding causes periodic
returns to be lognormally distributed. The contin-
uous counterparts of these periodic returns are nor-
mally distributed, which is why the inputs to the
normal distribution function are in continuous
units.

When VAR is to be estimated, we turn this
calculation around by specifying the probability
and solving for the loss amount, as shown:
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euT~Zcﬁ 3

VAR = —( DHW, (2)

where

e = base of natural logarithm (2.71828)

Z = normal deviate associated with chosen

probability

W = initial wealth

Both of these calculations pertain only to the
distribution of values at the end of the horizon and,
therefore, ignore variability in value that occurs
throughout the horizon. To capture within-horizon
variability, we use a statistic called “first-passage
time probability.”5 This statistic measures the prob-
ability, Pryy, of a first occurrence of an event within
a finite horizon. It is equal to

Pry, = Nln(l+L)— T
oJT

3)
+ Nln(l +L)+ “T(l 4 L)Zp/02.
o T

Equation 3 gives the probability that an invest-
ment will depreciate to a particular value over some
horizon during which it is monitored continu-
ously.® Note that the first part of Equation 3 is
identical to Equation 1 for the end-of-period proba-
bility of loss. Itis augmented by another probability
multiplied by a constant, and in no circumstances is
this constant equal to zero or negative. Therefore,
the probability of loss throughout an investment
horizon must always exceed the probability of loss
at the end of the horizon. Moreover, within-horizon
probability of loss rises as the investment horizon
expands in contrast to end-of-horizon probability of
loss, which diminishes with time.

This effect introduces an interesting twist to
the time diversification debate. Samuelson (1963)
argued against time diversification by demonstrat-
ing that, although probability of loss at the end of
the horizon decreases as the horizon grows, this
benefit is offset by the increasing magnitude of
potential loss. Our result presents a new challenge
to those who argue that time diversifies risk
because the result does not depend on magnitude
of loss. It shows that risk increases even if investors
care only about the probability of loss.

We can also use Equation 3 to estimate contin-
uous VAR. Whereas VAR measured convention-
ally gives the worst outcome at a chosen probability
at the end of an investment horizon, continuous
VAR gives the worst outcome at a chosen probabil-
ity from inception to any time during an investment
horizon.

We cannot solve for continuous VAR analyti-
cally. We must resort to numerical methods. We set
Equation 3 equal to the chosen confidence level and
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solve iteratively for L. Continuous VAR equals -L
times initial wealth.

Applications

In this section, we present applications of within-
horizon probability of loss and continuous VAR to
currency hedging and a leveraged hedge fund.

Currency Hedging. Suppose we allocate a
portfolio equally to Japanese stocks and bonds,
represented, respectively, by the MSCI Japan Index
and the Salomon Brothers Japanese Government
Bond Index. Table 1 shows, based on monthly
returns from January 1995 through December 1999,
the standard deviations and correlations of these
indexes together with the risk parameters of the
Japanese yen from a U.S. dollar perspective.

Table 1. Risk Parameters: Japanese Stocks and
Bonds, 1995-99

A. Standard deviation

Asset Standard Deviation
Stocks 21.87%
Bonds 16.01

Yen 14.81

B. Correlation

Asset Stocks Bonds Yen
Stocks 100.00%

Bonds 42.01 100.00%

Yen 53.58 91.08 100.00%

Let us assume further that the underlying port-
folio has an expected return of 7.50 percent, hedg-
ing costs equal 0.10 percent, and our risk aversion
equals 1.00.” Based on these assumptions, the opti-
mal exposure to a Japanese yen forward contract is
-87.72 percent.® The expected return and risk of the
unhedged and hedged portfolios are shown in
Table 2.

Table 2. Expected Return and Risk

Measure Unhedged 7.72% Hedged
Expected return 7.50% 7.41%
Standard deviation 16.04 9.17

Now, let us estimate the probability of loss for
the unhedged and hedged portfolios. Table 3
shows the likelihood of a 10 percent or greater loss
overa 10-year horizon at the end of the horizon and
atany point from inception throughout the horizon
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Table 3. Probability of Loss: 10-Year Horizon

10 Percent or
Greater Loss

25 Percent or
Greater Loss

End of During End of During
Type Horizon Horizon Horizon Horizon
Unhedged 6.29% 54.14% 2.75% 17.98%
Hedged 0.18 13.91 0.02 0.45

for an unhedged and optimally hedged portfolio of
Japanese stocks and bonds.

If we were concerned only with the portfolio’s
performance at the end of the investment horizon,
we might not be particularly impressed by the
advantage offered by hedging. It reduces the like-
lihood of a loss equal to 10 percent or greater from
6.29 percent to 0.18 percent, and 6.29 percent might
not seem like a large risk. But if, instead, we care
about what might happen along the way to the end
of the horizon, the advantage of hedging is much
more apparent.

Even with the foreknowledge that we are more
likely than not at some point to experience a 10
percent cumulative loss, we may consider such a
loss tolerable. But what about a loss of 25 percent
or greater? Again, calculating the probabilities
indicates that, although the impact of hedging on
end-of-period outcomes is unremarkable, it vastly
reduces the probability of a 25 percent or greater
loss during the investment horizon. Although
many investment programs might be resilient to a
10 percent depreciation, they are less likely to expe-
rience a decline of 25 percent or more without
consequences.

Now, let us compare VAR measured conven-
tionally with continuous VAR for the hedged and
unhedged portfolios. Table 4 reveals that the
improvement from hedging is substantial whether
VAR is measured conventionally or continuously.
For example, measured conventionally, hedging
improves VAR from a 5 percent chance of no worse
than a 14.68 percent loss to a 5 percent chance of no
worse than a 26.52 percent gain.” More important,
however, is the substantial difference between VAR
measured conventionally and VAR measured con-
tinuously. Continuous VAR is more than twice as
high as conventional VAR for the unhedged portfo-
lio, and when the portfolio is hedged, continuous
VAR shows a substantial loss compared with a sub-
stantial gain when it is measured conventionally.

Table 4. VAR (5 Percent): 10-Year Horizon

Type Conventional VAR Continuous VAR

Unhedged +14.68% +38.68%

Hedged -26.52 +14.77
©2002, AIMR®
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Leveraged Hedge Fund. Now consider the
implications of these risk measures on a hedge
fund'’s exposure to loss. Suppose we are interested
in a hedge fund that uses an overlay strategy, which
has an expected incremental return of 4 percent and
an incremental standard deviation of 5 percent.
This hedge fund also leverages the overlay strat-
egy. Table 5 shows the expected returns and risks
of the hedge fund and its components for varying
degrees of leverage.

The data in Table 5 assume that the underlying
asset is a government note with a maturity equal to
the specified three-year investment horizon and
that its returns are uncorrelated with the overlay
returns. Managers sometimes have a false sense of
security because they view risk as annualized vol-
atility, which diminishes with the duration of the
investment horizon, but as we have noted, the
fund’s assets may depreciate significantly during
the investment horizon. Figure 2 compares the like-
lihood of a 10 percent loss at the end of the three-
year horizon with its likelihood at some point
within the three-year horizon for various leverage
factors (e.g., 2 to 1). Figure 2 reveals that the chance
of a 10 percent loss at the end of the horizon is low
but there is a much higher probability that the fund
will experience such a loss at some point along the

way, which could trigger withdrawals and
threaten the fund’s solvency.

The same issue applies if exposure to loss is
perceived as VAR. Figure 3 shows the hedge fund’s
VAR for various leverage factors measured con-
ventionally and continuously. Whereas conven-
tional VAR for leverage factors less than 6 to 1 is
negative (a gain) and still very low for leverage
factors up to 10 to 1, continuous VAR ranges from
approximately 10 percent of the portfolio’s value to
approximately 40 percent of its value.

Conclusions

Investors measure risk incorrectly if they focus
exclusively on the distribution of outcomes at the
end of their investment horizons. This approach to
risk measurement ignores intolerable losses that
might occur throughout an investment period,
either as the result of the accumulation of many
small losses or from a significant loss that later (too
late, perhaps) recovers.

To address this shortcoming, we have intro-
duced two new approaches to measuring risk—
measuring within-horizon probability of loss and
measuring continuous VAR. Our applications of

Table 5. Leveraged Hedge-Fund Expected Return and Risk

Leverage
Underlying Overlay
Measure Asset Strategy 2 4 6 8 10
Expected return 3.50% 4.00% 11.50% 19.50% 27.50% 35.50% 43.50%
Standard deviation 3.00 5.00 10.44 20.22 30.15 40.11 50.09

Figure 2. Probability of 10 Percent Loss: Three-
Year Horizon

Figure 3. VAR (5 Percent): Three-Year Horizon
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these measures in reasonable scenarios illustrates
vividly that investors are exposed to far greater risk
throughout their expected investment periods than
end-of-horizon risk measures indicate.

If investors (and their managers) do not care
about within-horizon risk, they should. At the very
least, investors need to be aware of the likelihood
that they will (or will not) be able to sustain their
investment strategies. Awareness does not neces-
sarily mean that investors should simply reduce
risk, although such a course of action may be war-
ranted. Indeed, if investors are informed of their
within-horizon exposures to loss, then if an
unpleasant loss occurs, they will not be unduly
surprised and will not act to reduce risk out of a
misguided perception that the nature of their
investment strategy has changed.

Appendix A. Within-Horizon Risk

We present here, first, an intuitive derivation of our
risk measures, under the restrictive assumption
that expected return equals zero, followed by a
more formal derivation in which we relax this
assumption.

Intuitive Description. The probability of loss
at the end of a horizon is path independent; its
estimate does not depend on the particular
sequences of returns that lead to the final distribu-
tion of outcomes. In contrast, the estimate of prob-
ability of loss from inception to any point along the
way is path dependent. We cannot ignore the spe-
cific sequences of returns that lead to the ending
distribution because some sequences that end up
above the chosen barrier will at some point along
the way have breached it. The distinction between
path-independent and path-dependent probabili-
ties is clear from a comparison, as shown in Figure
A1, of the recombining binomial tree with a tree
that does not recombine.

Figure A1. Path-independent and Path-
Dependent Binomial Trees

Path-Independent Tree Path-Dependent Tree
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Path independence is a common assumption
in financial analysis because path-independent
problems are much easier to solve than path-
dependent problems. For example, a binomial tree
with 30 time steps has 31 possible terminal out-
comes if it recombines (is path independent),
whereas it has more than one billion possible out-
comes at the final time step (230 = 1,073,741,824) if
it does not recombine (is path dependent). One
need notbe a cynic to assume that financial analysts
often sacrifice the realism of path dependency for
the sake of computational convenience.

Path-dependent probability. We show that
path-dependent probabilities for which the
expected return is zero can be restated as simple
path-independent probabilities through use of the
“reflection” principle (also called “method of
images”) and then solved with well-known tech-
niques. The reflection principle states that as long
as the investment’s expected return is zero, for
every return path (in continuous units) within any
time interval, there is an equally likely return path
that is its mirror image.

This principle can be used to solve for another
useful estimate—the probability that an invest-
ment will depreciate to a particular level atany time
during the horizon and then recover. We present a
simple procedure for estimating these probabilities
(again under the assumption that the investment’s
expected return equals zero). Indeed, it is easier to
present the intuition behind the joint probability
that an investment will first breach a barrier and
then appreciate to a hurdle than it is to explain the
independent probability that an investment will
breach a barrier.

Figure A2 shows how we can use the reflection
principle to solve for this joint probability. The
solid line represents the cumulative-return path (in
continuous units) of a hypothetical investment
through time. It first depreciates through a hurdle,
h, and continues lower through a barrier, b, after
which it recovers to a point above the hurdle. To
estimate the probability that an investment (with
an expected return of zero) will recover to a hurdle
after it has breached a barrier, we invoke the reflec-
tion principle with its mirror image of this path.
Therefore, we trace out a reflected return path (rep-
resented by the dotted line in Figure A2) from time
t, when the barrier is first breached, to the end of
the horizon, time T.

Itis straightforward to estimate the path-inde-
pendent probability that an investment’s cumula-
tive return in continuous units will be less than or
equal to a particular value (in this case, 2b - h).
With the assumption that continuous returns are
normally distributed, this probability equals
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Figure A2. The Reflection Principle
(PriminR[t] < h} = Pr{R[T] < 2b— h})

Investment Return

Actual
f Path
) L,
2b—h .| Mirror
Path
t T

N[(r/n)/c], where N is the cumulative normal

distribution function, r is the continuous cumula-

tive return, n is the number of years in horizon T,

and ¢ is the standard deviation of the investment’s

continuous returns.

The path-independent probability of return
less than or equal to value 2b—# that is below
barrier b is identical to the path-dependent probabil-
ity of first crossing the barrier and then declining
to value 2b—h because 2b - cannot be reached
without first crossing b at some point.

The reflection principle guarantees that the
probability of achieving a cumulative return equal
to h from time t to time T is the same as the
probability of achieving a cumulative return equal
to 2b — h over the same time interval. Therefore, the
path-dependent probability of first breaching bar-
rier b at any time f and then recovering to hurdle 1
at the end of the horizon T is equal to the path-
independent probability of experiencing a cumu-
lative return equal to 2b — h from inception through
time T.

To summarize:
¢ The path-independent probability of achieving

a cumulative return below a barrier over the

full investment horizon equals the path-depen-

dent probability of first breaching the barrier at
any point during the horizon and then experi-
encing the balance of the cumulative loss.

¢ The reflection principle states that for any
given return path, as long as expected return is
zero, there is an equal probability of a return
path that is its mirror image.

e Therefore, the probability of first breaching a
barrier and then recovering to a hurdle equals
the probability of first breaching a barrier and
then falling further to the mirror image of the
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hurdle, which in turn, equals the probability of
experiencing a cumulative path-independent
loss equal to the mirror image of the hurdle.

Probability of breaching a barrier. Next, we
demonstrate how to estimate the probability that
an investment’s cumulative return will breach a
barrier at least once during an investment horizon.
We restate this probability as 1 minus the probabil-
ity that the investment will never breach the bar-
rier. This statement can be written as 1 minus the
joint probability that (1) the cumulative return as of
the end of horizon T will exceed the barrier and (2)
the minimum cumulative return during the hori-
zon will exceed the barrier.

Next, we invoke the law of total probability:
The joint probability of A and B equals the proba-
bility of A minus the joint probability of A and not
B:

Pr(A, B) = Pr(A) — Pr(A, not B).

This probability can be restated as 1 minus the
probability that the cumulative return at time T will
exceed the barrier, Pr(A), plus the joint probability
that the cumulative return at time T will exceed the
barrier and the minimum cumulative return during
the horizon will be less than or equal to the barrier,
Pr(A, not B).

The probability that the cumulative return at
time T'will exceed the barrier isequalto N[(b/n)/c].
As we demonstrated earlier, the joint probability
that (1) the cumulative return at time T will exceed
the barrier and (2) the minimum cumulative return
during the horizon will be less than or equal to the
barrier equals N[(r/n)/c]. Thus, the probability
that an investment’s cumulative return will breach
abarrier at least once during an investment horizon
equals 1 - N[(b/n)/c] + N[(r/n)/ol.

Once again, to summarize:
¢ The probability that the minimum cumulative

return will be less than the barrier return at

some point during the horizon equals 1 minus
the probability that the minimum cumulative
return is always greater than or equal to the
barrier return,

¢ which equals 1 minus the probability that the
cumulative terminal return is greater than or
equal to the barrier return and that the mini-
mum return during the horizon is greater than
or equal to the barrier return,

¢ which equals 1 minus the probability that the
cumulative terminal return is greater than or
equal to the barrier return plus the probability
that the cumulative terminal return is greater
than or equal to the barrier return and that the
minimum cumulative return during the hori-
zon is less than the barrier return.
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Formal Description. In this formal descrip-
tion, we start with recovery probability. Suppose
we are interested in the joint probability that the
value of our portfolio at time T, S(T), will exceed
hurdle level H and fall below barrier level B at some
point during the investment period, as expressed
in the following:

Pr[S(T)>H, minS(t) < B]
Pr[R(T)=h, minR(t) < b]

_ (@ )ZM/GINFn(BZ/SH) + pT}_
oJT

S

The first equality results from converting periodic
units to continuous units [k =1In(H/S), b = In(B/S),
R(T) =In[S(T)/S], and R(t) = In[S(t)/S, where 5(t)
is the value of the portfolio at time t € (0,T)]. Note
that Pr[R(t) < b] = Pr(t < T) = the global
minimum[t:R(t) = b, t € (0,T)], where 1 is the first-
passage time of R(t) to level b. The second equality
follows from the reflection principle, a heuristic
approach for solving path-dependent problems.
The strong Markov property is required for a rigor-
ous proof, but the reflection principle has the
advantage of intuition and requires no complex
calculations or knowledge of continuous-time
mathematics. It is limited, however, because it
applies only to cases in which expected return is
zero. Nevertheless, we can generalize the case of
zero drift to cases with a nonzero drift by applying
Girsanov’s theorem.!”

(A1)

The derivation of the first-passage probability
formula requires several algebraic steps to restate
it in a more convenient form:

Pr[minS(t) < B]

Pr[minR(¢) <b]

1-Pr[minR(t) = b]

1-Pr[R(T)2 b, minR(t) > b]
1-Pr[R(T)=b]+Pr[R(T) 2 b, minR(t) <b] (A2)
Pr[R(T) <b] + Pr[R(T) = b, minR(F) < b]

Il

_ N|In(B/S)-uT +(§)2W"ZN In(B/S) +uT |
o T S oT

The first line converts periodic units to continous
units. The second line holds because “proper” prob-
abilities must sum to 1. The third equality appends
a redundant condition to the path-dependent prob-
ability. It requires that the minimum return always
exceed level b, which implies that the terminal
return also must exceed level b. This redundant
condition facilitates the use of the law of total prob-
ability to restate the problem as shown in the fourth
line. Terms are collected in the fifth line. The fifth
line contains two probability expressions:
Pr[R(T) < b], which is a normal path-independent
probability, and Pr[R(T) 2 b, minR(¢t) < b], which is
arecovery probability inwhich /1 = b. The first prob-
ability expression is evaluated directly, and the sec-
ond probability is evaluated from the first result in
this appendix (Equation Al).

Notes

1. Although we discuss this innovation as two risk measures,
we acknowledge they are interconnected in such a way that
they could be considered two sides of the same coin. This
fact is clear from the mathematical description of these risk
measures that we present. Although the risk measures are
closely related, however, they are not redundant. Investors
sometimes care about the relatively high probabilities of
moderate losses and, in other instances, are more concerned
with extreme events, which are better captured by VAR.

2. If periodic returns are independent and identically distrib-
uted, it follows mathematically that they are distributed
lognormally. The positive skewness of lognormality results
from the process of compounding.

3. A common procedure to reduce sensitivity to estimation
error in optimization is to compress the moments for each
of the component assets toward the grand means of these
moments.

4. One method is “block bootstrapping,” in which the analyst
samples sequences of contiguous observations with
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replacement to capture the effect of serial correlation on a
sample’s distribution.

5. The first-passage probability is described in Karlin and
Taylor (1975).

6. In Appendix A, we present an intuitive derivation of our
risk measures under the restrictive assumption that
expected return equals zero, together with a more formal
derivation in which we relax this assumption.

7. Arisk aversion equal to 1.00 implies that we are willing to
incur 1 unit of hedging cost to lower our portfolio’s variance
by 1 unit.

8. The forward contract exposure is derived by maximizing
portfolio expected return minus risk aversion times portfo-
lio variance, as a function of exposure to the forward con-
tract exposure.

9. A gain appears as a negative value in Table 4 because VAR
typically refers to a loss.

10. For a discussion of Girsanov’s theorem, see Cox and Miller
(1965, pp. 220-221).
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